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Fibrous Mini-Collagens in Hydra Nematocysts

T. W. Holstein,* M. Benoit, G. v. Herder, G. Wanner,
C. N. David, H. E. Gaub*

Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic

force microscopy and field emission scanning electron microscopy reveal the structure of
the nematocyst capsule wall. The outer wall consists of globular proteins of unknown
function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50
to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist
of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The
distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength
necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

Nematocysts are exocytotic organelles that
are characteristic of the phylum Cnidaria.
There are at least 25 morphologically different
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capsule types, which are involved in a variety
of functions, including capture of prey, de-
fense, and locomotion (1). Capsules have
very high internal pressures of up to 15 MPa
(2), which drive nematocysts' discharge, dur-
ing which the capsule's internal tube is evert-
ed (3). High-speed cinematography has
shown that the entire process takes about 3 ms
and takes place at accelerations of up to
40,000g (4). The explosive discharge ofnem-
atocysts is thus one of the fastest events in
biology. The extreme osmotic pressure in
resting capsules and the extraordinary speed of
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evagination lead one to expect high tensile
strength in the capsule wall. By combining
atomic force microscopy (AFM) and field
emission scanning electron microscopy
(FESEM) with biochemical methods, we re-
solved the structure of the capsule wall, and
we show that the molecular basis for its high
tensile strength resides in fibers of a form of
collagen: "mini-collagen" (5).

The capsule wall consists of an outer layer
(100 nm thick), which can be enzymatically
dissociated with pronase B, and an inner layer
(200 nm thick) composed of mini-collagen
(5). The capsule itself, but not the tube, was
covered with densely packed globular particles
(50 to 100 nm in diameter) of uniform shape
(Fig. 1, A and B) (6, 7). Treatment of
capsules with SDS or with the reducing agent
dithiothreitol (DTI) (65 FM) at an alkaline
pH removed this outer layer and revealed an
underlying inner wall that appeared, by
FESEM analysis (7), to have a smooth surface
(Fig. 1C). The outer globular layer that was
removed by DIT treatment was composed
primarily of proteins larger than 40 kD (Fig.
iD) (8). The inner wall consisted primar-
ily of small proteins, 12 to 16 kD and 25 to
40 kD in size (Fig. iD), which were rich in
proline and constituted mini-collagen
monomers and covalently cross-linked di-
mers and trimers (5).

The mechanical stability of the inner
wall may be estimated as follows: The ten-
sion in a spherical shell under internal
pressure is given by

a sphere = (P x r) (2d)1
If we assume an internal pressure P of 15
MPa (2), a radius r of 5 to 10 pm (3), and
the thickness of the inner wall, d, to be 200
nm (3), the tension of the inner wall turns
out to be a = 190 to 375 MPa. In order to
sustain this enormous tension, the tensile
strength of the capsule must be nearly as
high as that of steel.

Colagens can form either fibrils or net-like
structures to withstand high loads (9). To
distinuish between these potential structures
in the capsule wall in vivo, we investigated
the inner wall in more detail by AFM (10,
11). Isolated nematocyst capsules from Hydra
vulga polyps were mechanically im lized
on nucleopore filter membranes by being
sucked partially into the pores (12). The
nematocysts were imaged with an atomic
force microscope equipped with a fluid cell
(13). Using 5-pim-long carbon tips (13) and
operating at im g forces below 5 nNt we
identified densely packed structures that were
60 to 180 nm apart (Fig. 2A). The apparent
shape of these structures is also a function of
the tip geometry, but on the basis of the
spacing of the structures, they appear to be
equivalent to the globular structures of the
outer wall that were seen by FESEM.

In order to image the inner wall, we

dissected the outer wall by passing the tip
repeatedly over the capsule surface. After
several sweeps with the tip, the layer of
globular particles was completely removed,
exposing the inner wall of the nematocyst
capsule. This surface showed numerous,
densely packed, fiber-like structures, spaced
50 to 100 nm apart (Fig. 2, B and C) and
oriented at an angle of about 400 to the
longitudinal axis of the capsule. Because
the inner wall is about 200 nm thick (3),
only two to four layers of mini-collagen
fibers can fit into it. Similar fibers were
found when the outer wall was removed

Fig. 1. Structure and biochemical
dissection of a nematocyst cap-
sule. (A) FESEM image of a dis-
charged stenotele shoWing the
rough capsular surface (ca) and
the smooth surface of the everted
tube (tu); scale bar, 1 &m. (B)
FESEM image of the globular parti-
cles of the outerwall; scale bar, 100
nm. (C) Dithiothreitol treatment (65
FM) removes the outer layer, re-
vealing a smooth underlying inner
wall (FESEM image); scale bar, 200
nm. (D) SDS-PAGE analysis of
DTT-treated capsules (65 gM) with
the use of polyacrylamnide gradient
gels (4 to 20%) stained with
Coomassie blue. Lane 1, control
nematocysts [corresponds to (A)];
lane 2, pellet of DTT-treated cap-
sules [corresponds to (C)]; lane 3,
supernatant of DTT-treated capsules [corresponds 1

chemically by DTT treatment (Fig. 2E).
The surface corrugations were extremely
shallow under those conditions and could
be recorded only in the deflection mode,
probably because the supramolecular orga-
nization was altered by DTT and fixation
(this might also explain why FESEM failed
to resolve fibers properly) (see Fig. 1C) -

When intact capsules were induced to dis-
charge (2), we found similar fiber-like struc-
tures running along the twisted tubes (Fig.
2F), which suggests that the fibers of the
capsule's inner wall continue along the
tube. At the base of the capsule, the fibers

D 1 2 3

kD
84-

47-
33-
16-

Flg. 2. AFM dissection of a nematocyst cap-
sule. (A) AFM image of the outer wall, showing
the globular surface (the microscope was in
constant force mode at -2.5 nN and had a
scan speed of five lines per second); scale bar,
500 nm. (B through D) AFM images after the
outer wall was physically removed by the can-
tilever tip (see text). (B) Fibers of the inner wall,
oriented obliquely to the longitudinal axis of the
capsule; scale bar, 200 nm. (C) Labeled area of
(B), imaged with the same tip at a higher
magnification and in a different scanning direc-
tion (tilted clockwise by 900, as indicated by f)
(note individual fibers showing a 30- to 40-nm
periodicity); scale bar, 100 nm. (D) Whorl-like
pattern of fibers at the base of a capsule; scale
bar, 500 nm. (E) AFM image (made in deflec-
tion mode) of DTT-treated (65 ,uM) and chem-
ically fixed capsules (2.5% glutaraldehyde in
50 pLm of phosphate buffer), showing fibers with
30- to 40-nm periodicity; scale bar, 500 nm. (F)
Low-magnification image of a discharged nem-
atocyst tube; intact capsules were induced to
discharge (2). Note the fibers and the twisted
pattern of the everted tube; scale bar, 10 pm.
For (B) through (D) and for (F), the microscope
was in constant force mode at -50 nN and had
a scan speed of five lines per second. For (A)
through (F), different capsule preparations and different tips were used; images are representative
of over 100 imaged capsules, with 10 to 20 images made per capsule at different magnifications,
scan directions, and imaging forces. Fifty independent preparations [see (6) and (12)] were done,
most with a new tip (13).
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Fig. 3. Autocorrelation analysis of five indepen-
dent images (from different capsule prepara-
tions, made with different tips) of an area shown
in Fig. 2C. Images were added together and
smoothed with a 9 x 9 hat operator; scale bar,
100 nm. The autocorrelation analysis shows
that the fibrous structure (F) has an average
spacing of 52 nm. A second ridge can be seen
at 110 nm (see text). The fine structure within
the fibers (S) has an average spacing of 32 nm.

show a whorl pattern, in which fibers con-

verge from all directions (Fig. 2D). On the
basis of geometrical considerations, one

would expect that a sphere that is contin-
uously covered with fibers would show at
least one whorl. The fact that such a

pattern is found at the base of the capsule
strongly favors the idea that the supramo-

lecular organization of the inner wall is
fibrous rather than net-like.

At higher magnification, individual fibers
show periodic cross-striations that consist of
alternating grooves and ridges (Fig. 2C). Fig-
ure 2C shows the central area of Fig. 2B, but
scanned in an orientation rotated 900 from
that in Fig. 2B. Fibers have the same period-
icity, and the rotation of the fiber orientation
is in accordance with the rotation of the
scanning direction. Small differences in de-
tails of fiber structure are due to the finite size
of the tip or to minor distortions caused by the
scanning process (or both). Figure 3 shows an

averaged autocorrelation analysis made from
images that were recorded from the area

shown in Fig. 2C. The autocorrelation anal-
ysis shows that the fibrous structure that is
clearly visible in Fig. 2C has an average
spacing of 52 nm. A further peak at 110 nm
could be due either to the second order of the
autocorrelation analysis or to a second class of
thicker fibers. The fine structure within the
fibers has an average spacing of 32 nm.

The structural model of mini-collagens (5)
suggests that these molecules can form rod-
shaped structures that are 50 nm long. The
central, triple helical collagen domain (15 nm
in length) (5) is flanked by cysteine-rich
NH2-terminal and COOH-terminal domains
that form polyproline II helices (9 to 26
nm in length). The fibers in the inner wall
could thus consist of mini-collagen poly-
mers in which the NH2- and COOH-
terminal domains overlap and are stabi-
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Fig. 4. Model of the supramolecular organiza-
tion of a nematocyst capsule's inner wall. Mini-
collagen molecules have a central triple helical
domain (12 to 14 nm in length) flanked by
cysteine-rich polyproline 11 helices (9 to 22 nm
in length). Polymer formation occurs by S-S
linkage of overlapping NH2- and COOH-termi-
nal domains, which yields a repeating pattern
of triple helical (solid lines) and cysteine-rich
(open bars) domains (S-S bridges are indicat-
ed by lateral branches). Some of the fibrils of
the inner wall extend distally to form the wall of
the tube.

lized by S-S bridges (Fig. 4). Such protofila-
ments would have a characteristic surface
profile in which triple helical domains (4 nm
in diameter) alternate with polyproline II
helices (8 nm in diameter). In such a fiber,
the repeating pattern from one triple helical
domain to the next can vary between 20 and
40 run, which is highly consistent with the
distinct periodicity shown by AFM (Fig. 3).
Our observations support a model (Fig. 4) in
which the tensile strength of the capsule is
created by layers of mini-collagen fibers,
which begin at the base and spread up and
around the capsule. The fibers in the different
layers are oriented at an angle to each other
(Fig. 2), so that an amphora is formed that
has high tensile strength in all directions.
Such a model is also compatible with the
pathway of capsule morphogenesis in which
polymerization of the wall begins at the cap-
sule base and progresses toward the tube (14).

Nematocyst capsules appeared early in ev-

olution, probably developing from simpler
extrusive organelles such as those found in
several classes of protozoa (15). The high
osmotic pressure required for the exocytotic
discharge of these organelles (16) may have
been an important constraint on the evolu-
tion of collagen molecules.
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