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A Conditional Gating Mechanism Assures the Integrity of the Molecular
Force-Sensor Titin Kinase
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†Chair for Applied Physics and Center for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany; ‡Center for Integrated
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ABSTRACT As more and more recent investigations point out, force plays an important role in cellular regulation mechanisms.
Biological responses to mechanical stress are often based on force-induced conformational changes of single molecules. The
force sensor, titin kinase, is involved in a signaling complex that regulates protein turnover and transcriptional adaptation in stri-
ated muscle. The structural architecture of such a force sensor determines its response to force and must assure both activity
and mechanical integrity, which are prerequisites for its function. Here, we use single-molecule force-clamp spectroscopy to
show that titin kinase is organized in such a way that the regulatory domains have to unfold before secondary structure elements
that determine the overall fold and catalytic function. The stepwise unfolding over many barriers with a topologically determined
sequence assures that the protein can react to force by conformational changes while maintaining its structural integrity.
INTRODUCTION
Over the recent decades, much has been learned about the
networks regulating cellular behavior. Although the focus
of research still lies on cellular or molecular responses to
biochemical stimuli, it is increasingly recognized that other
inputs such as force play an important role in regulatory
signaling networks. Forces affect many physiological
processes such as cell proliferation and differentiation (1),
cell adhesion (2), wound-healing (3), or hearing (4). There-
fore, extra- and intracellular force sensors are required that
generally operate through force-induced conformational
changes on the molecular level (5–7). The molecular archi-
tecture of such sensors is of special interest, because it
gives further insight into their working principle, and
force-dependent measurements help us to understand the
fundamental effects on the relation among conformation,
mechanical stability, and function (8–10).

In striated muscle, the large protein titin spans half the
sarcomere, provides the muscle with passive elasticity, and
serves as a molecular ruler for the sarcomere assembly
(11,12). Furthermore, titin is involved in mechanical
signaling pathways (13). Near the C-terminus, which is
located at the M-band of the sarcomere, titin contains
a kinase domain that is linked to the control of muscle
gene expression and protein turnover (14). The exact molec-
ular structure and even the constituents of the M-band are
not yet completely known (15,16). However, the M-band
acts as an elastic crosslinker of myosin filaments, and is
exposed to shear forces between adjacent myosin filaments
under active contraction that lead to buckling of the M-band
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on the order of at least 10 nm (15,16). Furthermore, thick
filaments also undergo length changes during contraction
and, to a lesser extent, stretch (17–19). The M-band and
particularly M-band titin have therefore been proposed as
a structure that senses muscle workload and feeds into path-
ways that control load-dependent remodeling (15,16).

The role of titin kinase (TK) as a force sensor was
recently investigated with a combination of single-molecule
force spectroscopy, molecular dynamics simulation, and
enzymatic analysis (20–22). The working principle on the
molecular level is shortly described as follows. In its inac-
tive conformation, TK is autoinhibited by a dual mecha-
nism. A C-terminal regulatory tail blocks the ATP binding
site, and tyrosine-170 inhibits the catalytic base. In contrast
to the situation of many other kinases, the relief of intramo-
lecular inhibition does not occur by conformational changes
induced by ligand binding, as no physiologically relevant
protein activator has been identified for TK or its inverte-
brate analog, twitchin kinase (reviewed in Gautel (23)).
Instead, forces applied between the C- and N-terminus of
the protein were shown to first break a b-sheet of the
C-terminal autoinhibitory tail, and then to remove the auto-
inhibitory a-helix R2, thus making the ATP binding pocket
accessible. Single-molecule force spectroscopy measure-
ments (24,25) performed with an atomic force microscope
(AFM) (26) at physiologically relevant forces, speeds, and
temperatures can therefore probe the conformational space
of TK and allow predictions in the natural environment.

Previous AFM experiments at constant pulling speed re-
vealed that the unfolding of TK occurs in a sequential and
apparently predetermined manner with up to six substeps
that will be called barriers in the following (Fig. 2 a). The
barriers are labeled from 1 to 5 and barrier 2* is highlighted,
because its occurrence was linked to the presence of ATP
and the pulling speed and is sensitive to mutations in the
doi: 10.1016/j.bpj.2011.09.027

mailto:gaub@lmu.de
http://dx.doi.org/10.1016/j.bpj.2011.09.027
http://dx.doi.org/10.1016/j.bpj.2011.09.027


Mechanical hierarchy Structural topology
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ATP-binding site, indicating that it reports conformational
changes in the active site. However, the cause of the
mentioned regularity in unfolding could not be directly
addressed. Further and deeper insight into the structural
architecture of TK would therefore result in a much better
understanding of the working principle of force-driven
processes on the single-molecule level.
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FIGURE 1 Possible mechanical architectures of proteins that consist of

multiple unfolding barriers. Each structural element that causes an energy

barrier in the unfolding pathway can be drawn as a combination of a bond

and a nonlinear spring. In the case of mechanical hierarchy, both barriers

are loaded simultaneously and the preference of opening is due to different

mechanical strength. In the case of structural topology, the unfolding

sequence is determined because one barrier is shielding the other. Under

constant velocity single-molecule force spectroscopy conditions, the two

scenarios cannot be easily distinguished because the mechanical strength is

determined not only by the rupture forces but also by the loading rates of

the bond thatmight be complex functions of the extension and speed formul-

tibarrier proteins. Force-clamp recordings, however, can intrinsically resolve

the underlying architecture because the time-dependent unfolding proba-

bilities of the barriers are independent in the case of mechanical hierarchy

and depend on each other in the case of structural topology. The distributions

are expected to be single-exponential for independent two-state systems and

peaked for elements that depend on the opening of another barrier.
The models of mechanical hierarchy
and structural topology

Looking at the arrangement of two of the structural elements
that cause energy barriers in a folded protein, there are two
possible scenarios that lead to an ordered sequence of un-
folding events:

In the first scenario, which we call mechanical hierarchy,
the structural elements are arranged in series such that the
force is transmitted through both of them and such that
they may unfold independently. The reason for an ordered
unfolding sequence in this case would be a different strength
of the two barriers, or regarding the complete unfolding
pathway of TK, a continuously rising mechanical resistance
from barrier 1–5.

In the second scenario, the barriers are arranged such that
the unfolding is predetermined through structural topology,
meaning that the elements are shielding each other and that
the first barrier has to be overcome before the second one
will be under load. Schematics of these scenarios are shown
in Fig. 1.

Whereas the previous studies on TK in the constant
velocity mode of AFM-based force spectroscopy were ideal
to determine the barrier positions with nm accuracy, they
were not able to discriminate between mechanical hierarchy
and structural topology because force and extension were
the recorded parameters. In experiments with constant
retraction velocity, the mechanical stability is characterized
by force and loading rate (dF/dt) (27). That complicates the
interpretation of the unfolding pattern because the latter is
not constant over time. Therefore a meaningful discrimina-
tion between the two scenarios may only be obtained in the
time-domain, i.e., through the access to the force-induced
unfolding kinetics of the barriers.

Here we employ the so-called force-clamp mode of
single-molecule force spectroscopy introduced by Fernan-
dez and Hansma (28), where a feedback loop keeps the pull-
ing force constant by readjusting the tip or surface position
after partial unfolding of the protein (29). This mode is
ideally suited for a differentiation between the given
scenarios because it allows access to the time-dependent un-
folding probability of the different structural elements under
constant pulling force. This unfolding probability should
significantly differ between the cases of mechanical hier-
archy and structural topology, as will be explained in the
following. Exposure to force over a longer timescale but
at low extension is also likely to more accurately reflect
the situation of cytoskeletal elements like titin in a contract-
ing sarcomere.
MATERIALS AND METHODS

Single-molecule force-spectroscopy experiments

Expression and purification of the TK protein construct A168M2 (867

amino acids, from position 24422–25288 in human cardiac N2-B titin, acces-

sionNo.NP003310.3) is described in theSupportingMaterial ofPuchner et al.

(21) except that cells from the line IPLB-Sf21AEwere used insteadof those of
Biophysical Journal 101(8) 1978–1986
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the sf9 line. Measurements were performed on mercaptosilanized glass

surfaces that were functionalized with n-(5-(3-Maleimidopropionylamino)-

1-carboxy-pentyl)iminodiacetic acid (Maleimido-C3-NTA; Dojindo, Rock-

ville,MD) using the protocol described inSchlierf et al. (30).They specifically

bind the His-Tag of the TK protein construct. After complexation of Ni2þ in

100 mM NiSO4 solution and rinsing, diluted protein solution (400 mL;

50 mg/mL) was used for the measurement.

The buffer solution consists of 40 mM 2-[4-(2-hydroxyethyl)-1-pipera-

zinyl]ethanesulfonic acid (HEPES)/KOH, 2 mM MgCl2, 2 mM dithiothrei-

tol, and 2 mM Adenosine-50-triphosphate (ATP; Roche Diagnostics,

Mannheim, Germany) and was adjusted to pH 7.2. Single-molecule force

spectroscopy (SMFS) experiments were performed with Biolever A and

B type cantilevers (Olympus, Tokyo, Japan) and a custom-built AFM

(29), which can be combined with an optical microscope for single-mole-

cule fluorescence studies (31). Spring constants of the cantilevers were

determined on basis of the equipartition theorem (32) by fitting the thermal

noise spectrum with the response function of a simple harmonic oscillator.

A practical implementation can be found in Cook et al. (33). The obtained

values are 5.2 pN/nm for the A-type and 22 pN/nm for the B-type lever.

For the force-clamp on TK, a control loop that steers a fast linear piezo

(P-753; Physik Instrumente, Karlsruhe, Germany) was implemented. It

adjusts the sample position in z direction in order to keep the pulling force

constant. The fast stage is attached to another piezo stage (P-733; Physik

Instrumente) that is used for sampling the surface in xy direction to prevent

multiple picking at the same molecule and to cover a wide area. The pro-

tocol was programmed with Igor Pro 5.0 (Wavemetrics, Lake Oswego,

OR) and feedbacks were operated at the MFP3D AFM controller (Asylum

Research, Santa Barbara, CA). Traces were recorded at setpoints of 20, 30,

40, and 50 pN clamping force. Response times for the piezo feedback are

~5 ms. Standard deviations from the force-setpoint during force-clamp

are ~3 pN for the A-type and 6 pN for the B-type lever.

Force- and extension traces were only saved if the desired force setpoint

was reached and the extension at the end of the trace exceeded 30 nm to

ignore traces with no tip-protein interaction and traces where unspecific

tip-surface interaction prevented the lever from detaching from the surface

within the acquisition time.
Force-clamp step analysis

Tip-surface extension traces were calculated by subtracting the cantilever

deflection from the piezo position values. The extension traces were

analyzed with an automated step finding routine written in Igor Pro 6.2

(Wavemetrics). Therefore, histograms of the position traces were generated

and peaks within these histograms were detected with a modified-form of
TABLE 1 Identification data for the substeps of TK unfolding at 30

Barrier No. 1

Contour length increment (21) 9.1 nm

Expected increment at 30 pN* 6.8 nm

Identification interval in force-clamp experiment 8 5 2 nm (A2)

Identification position relative to barrier 5 �42 5 4 nm

Determined off-rate at 30 pN koff 31 5 8 s�1

Barrier No. 3

Contour length increment (21) 7.3 nm (7.5 nm)

Expected increment at 30 pN* 5.5 nm (5.6 nm)

Identification interval in force-clamp experiment 4 5 2 nm (A1)

Identification position relative to barrier 5 �15 5 3 nm

Determined off-rate at 30 pN koff 21 5 4 s�1

Barriers were identified according to Fig. 4 and rates were obtained by fitting sin

barrier opening times (see Materials and Methods). Values in parentheses corres

population identifier.

*According to a wormlike-chain fit with persistence-length p ¼ 0.6 nm.
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the Peak AutoFind-Package delivered with Igor Pro. Peak position and cor-

responding time were saved for all traces. Unfolding time was set to zero

when a position 10 nm over the surface was reached to cancel out unspecific

tip-surface interaction that might keep the cantilever sticking to the surface

without applying a force to the measured protein. In this way, influence of

unspecific tip interaction on the absolute times of unfolding is reduced.

For the calculation of the unfolding rates ki, only those traces were

considered that had a step matching the expected increment of the unfolding

of TK’s barrier no. 5 (i.e., 445 3 nm at 30 pN pulling force) and an overall

extension of at least 70 nm. For identification of the other barriers, the posi-

tion before the opening of barrier no. 5 was set to zero (compare to Fig. 4).

Steps were classified by selecting height and position relative to barrier 5

according to Table 1.
Rate fitting

The probability density distribution of the unfolding time for each barrier

was determined as follows. Histograms over the time between two consec-

utive events (barriers 2–5) and the absolute time of unfolding (barrier 1)

were calculated. They neglect events that are shorter than the experimen-

tally determined average response time of the feedback (compare to

Fig. S2 in the Supporting Material), because these events occur only very

seldom and would distort the probability distribution. The number of bins

in each histogram corresponds to the square root of the number of events.

The unfolding rates ki were determined by fitting a single-exponential func-

tion with time offset t0 to the histogram:

pi;relðtÞ ¼ kie
�kiðt�t0Þ:

The time offset t0 again respects the finite response time of the feedback and

is linear-dependent on the height of the step (see Fig. S2). Errors of the

probability density histograms and the off-rates were determined by boot-

strapping. Therefore, for each histogram, 100 random subpopulations

were generated that consist of only 30% of the original data points. The

same rate fitting was applied to the subpopulations. Error bars include the

inner 90% of the bootstrapped values.

Markov-chain model

To check for consistency with the thesis that the structural elements of titin

kinase (TK) are topologically ordered, the following model was developed.

It describes the unfolding of TK from the natural folded conformation (F) to

the completely stretched unfolded conformation (U) as a sequential Markov

chain with up to five substeps (compare to Scheme 1 below) that are
pN clamping force

2/3 2/2* 2*

28.6 nm 19.4 nm 10.1 nm

21.5 nm 14.6 nm 7.6 nm

22 5 2.5 nm (C) 14 5 3 nm (B) 8 5 2 nm (A2)

�20 5 4 nm �27 5 5 nm �19 5 3 nm

20 5 4 s�1 18 5 6 s�1 83 5 45 s�1

4 5 Fn

18.0 nm (16.4 nm) 57.9 nm (58.3 nm) 30.8 nm

13.5 nm (12.3 nm) 43.4 nm (43.7 nm) 23.1 nm

14 5 3 nm (B) 44 5 3 nm (D) 22 5 2.5 nm (C)

0 5 2 nm 44 5 3 nm 67 5 7 nm

20 5 4 s�1 14 5 2 s�1 1.2 5 0.4 s�1

gle-exponential decays to the probability distribution histograms of relative

pond to the unfolding pathway with the additional barrier 2* or denote the
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identical with the measured barriers of previous work on TK (21) and

describe distinct conformational states of TK. The part of the amino-acid

chain that already went into an unfolded state can be described by polymer

models as the wormlike-chain model and increases with every step until

the complete protein is stretched. The decay of each step under force-clamp

conditions is assumed to be single-exponential with a rate constant ki. After

the decay of state 2, the additional substep 2* is reached with probability p

that is dependent on the pulling velocity (21).

Thus, the system can be described by the following linear differential

equation system,

d

dt

0
BBBBBB@

p1
p2
p2�
p3
p4
p5

1
CCCCCCA

¼

0
BBBBBB@

�k1
k1 �k2

pk2 �k2�
ð1� pÞk2 k2� �k3

k3 �k4
k4 �k5

1
CCCCCCA

0
BBBBBB@

p1
p2
p2�
p3
p4
p5

1
CCCCCCA
;

where pi(t) describes the time-dependent probability distribution of being in

state i. The differential equation system was solved under the initial condi-

tion p1(0) ¼ 1, pi(0) ¼ 0 (i s 0) analytically with the computer algebra
FIGURE 2 Sample data for the force-clamp experiments performed on titin

force spectroscopy (SMFS) in constant retraction velocity mode points out that t

come are numbered according to their position in this sequence. The probability

velocity and therefore treated specially (21). Data points are displayed semitrans

SMFS experiments the titin construct A168-M2, which consists of the kinase d

domain, is immobilized on the surface by specific coupling of the His-tag to a

force conditions. (c) Sample traces of the stepwise kinase unfolding under force

unfolding of the Ig-domains is only very rarely observed at this force. The distan

Histogram of the heights of all steps detected in the ~10.000 unfolding traces

observable (A–D). A comparison with the unfolding pattern obtained in cons

30 nm are formed by more than one structural element whereas the peak D is o

1). Therefore, this peak is used for trace selection and first structural dependen
system MAPLE 14 (Maplesoft, Waterloo, Canada). The normalized solu-

tion of p5(t) for the experimentally determined rate constants ki is depicted

in Fig. 5. Because the probability density for going from state 5 to the

unfolded conformation at time t is proportional to the probability of being

in state 5 at time t, p5(t) can be directly compared with the experimentally

determined unfolding times.
RESULTS

Distinction of structural barriers by step height

In one cycle of a force-clamp experiment, the tip of an AFM
cantilever is brought into contact with the surface and re-
tracted by a feedback loop that keeps the force constant.
Typical unfolding traces of the tip-surface distance and
the force are shown in (Fig. 2 c). The force is clamped
over time and only shortly drops when a barrier opens,
due to the finite response time of the feedback loop. For
investigating the properties of the mechanically stable
building blocks of TK, it is essential to discriminate the
barrier-causing elements in the recorded data. Therefore,
we analyzed the unfolding traces with an automated step-
finding tool that detects plateaus in the extension versus
time traces and records relevant parameters like step posi-
tion and height or the time at which the unfolding occurred
(see Materials and Methods).
kinase. (a) An overlay of 44 unfolding traces obtained by single-molecule

here is a preferred sequence of unfolding. The barriers that have to be over-

of occurrence of barrier 2* is linked to ATP presence in solution and pulling

parent. Such areas with high point density appear more intense. (b) For the

omain (PDB No. 1TKI), four Ig-like domains and one fibronectin-type III

NTA-functionalized surface and is pulled with a cantilever under constant

-clamp conditions at a setpoint of 30 pN. Due to the difference in stability,

ce of the two thin traces is set off to match the position of the black trace. (d)

that were recorded at 30 pN clamping force. Four populations are clearly

tant velocity mode confirms consistency and shows that the peaks below

nly due to the long increment of barrier 5 in titin kinase (compare to Table

cy analysis.
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A histogram of the detected step heights at a pulling-force
of 30 pN is given in Fig. 2 d. It is apparent that the heights
are not evenly distributed but exhibit several populations,
four of which are clearly distinguishable (A–D). A compar-
ison with the unfolding pattern obtained by regular force-
spectroscopy with constant pulling velocity allows the
identification of some of the barriers by their step height.
For the identification, we keep the notation of the barriers
as they were introduced in Puchner et al. (21). The structural
element of TK with the largest contour length (barrier 5
in Fig. 2 a) matches the position of population D around
44.5 nm (Table 1). We will initially focus on this barrier
because it is of special interest: it always opened last in
velocity-clamp experiments and it may be unambiguously
identified by its step height only. The other populations
may be due to the unfolding of at least two different structural
elements of the titin construct and will be examined later.
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FIGURE 3 Structural dependencies of barrier no. 5 measured at

a constant force of 30 pN. The timescales of the unfolding of the 44 nm

increment (see Fig. 2 d, population D) were analyzed as follows. (a) Histo-

gram of unfolding times after first force-appliance (tabs). The distribution is

clearly not single-exponential but g-shaped, which is a premise for struc-

tural topologies. The fitted line describes a three-step Erlang-distribution

with rate k ¼ 10.1 s�1. (b) Erlang-distributions for different step numbers

n from 1 to 10. For n ¼ 1 the distribution reduces to a single-exponential

decay. With increasing n average, unfolding times get higher and the distri-

bution gets more symmetric until it resembles a shifted normal distribution.

(c) Probability density histogram for the times trel between the unfolding of

the preceding step and the unfolding of barrier 5. The decay probability is

single-exponential and indicates that the single substeps are unfolding

according to the principle of Markovian two-step behavior.
Barrier 5 is mechanically shielded by other
structural elements

In AFM experiments with constant velocity, barrier 5 of titin
kinase was always observed to unfold last, but it cannot be
easily distinguished whether this is due to higher mechanical
stability or due to the fact that the domain is topologically
shielded by other structural elements. The force-clamp
recordings, however, are intrinsically able to distinguish
between these two scenarios through the access to the
unfolding kinetics, i.e., the probability of unfolding versus
time. In the case of mechanical hierarchy, the likelihood of
unfolding should not depend on other structural elements
and thus yield a single exponential decay, whereas the depen-
dence of unfolding on other structural elements in the case of
structural topology would result in a peaked distribution
because it takes a certain time until the observed state gets
populated.

Fig. 3 a shows the distribution of how long it takes for
barrier 5 to open after force is first applied to the protein.
This absolute time distribution exhibits a well-pronounced
peak with a maximum unfolding probability at ~200 ms,
which is far longer than the minimal time resolution of
the instrument. Note that the response time for the piezo
feedback is ~5 ms (compare to the Supporting Material
for experimental details). There is no doubt that the
measured time distribution is not single-exponential, as
would be required for independent Markovian two-state
barriers (35) in a mechanical hierarchy. Deviations from
two-state processes such as static (36) or dynamic (37)
disorder and glassy dynamics (38) are not appropriate expla-
nations for the measured data, because they still have mono-
tonic decaying probability distributions. The asymmetrical
shape with its pronounced peak (Fig. 3 a) resembles a g-
distribution very well. A simple model that yields such
a distribution is that of several single-exponential decaying
processes that occur one after another. For example, the
Biophysical Journal 101(8) 1978–1986
time-dependent probability density for the nth subsequent
occurrence of a process with the rate k is given by a binomial
distribution for discrete time steps (39) or, in continuous
time, by an Erlang-Distribution (37,40)
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pðt; k; nÞ ¼ kn

ðn� 1Þ! t
n�1e�kt;

which is a special case of a g-distribution with a discrete
second parameter. The behavior is depicted in Fig. 3 b.
For n ¼ 1 the probability density reduces to a simple expo-
nential curve. For n> 1, the curve has a peak and its position
shifts to higher times with higher numbers of events.
Furthermore, the curve gets less asymmetric with higher
n. Fig. 3 c shows the distribution of the dwell time between
the opening of barrier 5 and the previous barrier. It is again
supporting a model with structural dependent barriers
because it exhibits an exponential decay with a rate constant
of k5¼ 145 2 s�1, and thus indicates that the single unfold-
ing steps obey Markovian rules.

The absolute time distribution of the unfolding of barrier
5 is represented very well by an Erlang distribution (3 steps;
k ¼ 10.1 s�1) and its time constant does roughly match the
measured unfolding rate of barrier 5. However, the Erlang-
Model is an oversimplification by assuming all rates to be
the same, and is thus not an accurate fitting model for the
unfolding of TK. Nevertheless, it already illustrates that
there has to be a structural dependency of the unfolding
steps.
Identification of the other structural elements
and Markov chain modeling

To gain further insight into the processes taking place during
unfolding, the other barriers in the force-clamp traces have
to be identified too. This is done by taking into account both
the step height and the position at which unfolding occurs.
Barrier 5 is overcome at a position 114 nm above the surface
with a distribution width of 10 nm that is due to different
attachment sites of cantilever and surface and partial
opening of the surrounding Ig/Fn-domains (see Fig. S5).
This defined position exactly matches the added unfolding
lengths of all structural elements of TK at 30 pN pulling
force (see Table 1) and further affirms that barrier 5 also
opens last in force-clamp experiments. Fig. 4 a displays
how the barriers 1–4 as well as the fibronectin or Ig domains
can be identified by offsetting the distance trace to the posi-
tion of the unfolding event before barrier 5.

For nearly all of the events, this relative position together
with the step height allows the interpretation of which
unfolding step belongs to which barrier. (A drawback of
this method is that one only selects those traces that have
the unfolding order from 1 to 5, but the histograms in
Fig. 4 a prove that at least 88% of all detected steps in the
selected traces agree with this scheme.) To reduce possible
misinterpretation of the barrier number, the step height
population A was split into two parts (A1, A2) with a cutoff
at 6 nm. Therefore, there are maximally two expected
barriers per histogram, and their expected positions are
well separated. The histograms exhibit very pronounced
peaks that match the sequential unfolding pattern, which
is observed in experiments with constant retraction velocity.
Now the unfolding rates of the remaining barriers can be
determined (Fig. 4 b). They are depicted in Table 1 together
with the values and population identifiers that were used to
determine the barrier number.

To check the model of structural topology, we calculated
the analytical solution of the coupled differential equations
of a sequential Markov chain consisting of six barriers with
exponentially distributed unfolding times (see Materials
and Methods). There are six steps, because the additional
energy barrier 2* that is observed with a velocity-dependent
probability is considered as well. The resulting probability
distribution of the unfolding time of the last step with the
experimentally determined opening rates is depicted in
Fig. 5. Maximum and minimum likelihood distributions
were calculated by different combinations of rates that
were chosen from the experimental error range such that
they lead to most or least probable unfolding for a given
time. As the graph shows, the degree of coincidence of the
sequential Markov chain model with the experimentally
determined distribution is high. Themost probable unfolding
time, for example, is 204 ms for the model and within 170–
220ms for the experimental data. However, the experimental
distribution has a slightly broader tail that is shifted to longer
times.

A manual revision of the unfolding traces showed that the
timescale of unfolding seems to correlate for the structural
elements in a single trace. All these elements tend to either
open slightly faster or slower in a single trace, which causes
a broadening of the probability distribution to longer times
with respect to the Markov chain model. Because it cannot
be distinguished whether this shift is due to an intramolec-
ular effect like deviations from two-state behavior (38,39)
or is mainly caused by faint shifts of the force setpoint
due to cantilever drift, we will refrain from a further discus-
sion of this effect and treat it as incompleteness of the model
or experimental artifact. (Note that setpoints that are shifted
only ~5 pN can already yield rates that differ ~50% from the
desired one. Therefore, protein unfolding in traces where the
setpoint is 5 pN too low would need, on average, twice the
time and 0.66 of the regular time for setpoints that are too
high. This effect is strong enough to explain the deviations
from the modeled line. See Force Dependence of Unfolding
Rates in the Supporting Material.)
Independent unfolding of the fibronectin domain

At 30 pN clamping force, in ~10% of the unfolding traces,
not only is the complete titin kinase unfolding pattern
observable, but another 22-nm step is present. This is due
to the unfolding of one of the four surrounding Ig-domains
or the fibronectin domain, which are included in the titin
fragment used here and have similar step heights as barrier
Biophysical Journal 101(8) 1978–1986



FIGURE 4 (a) Identification of the structural

barriers by height and position relative to barrier

5. Histograms of the unfolding position relative

to barrier 5 are drawn for each population intro-

duced in Fig. 2 d. To reduce the possibility of

misinterpretation between barriers 2* and 3, the

population A has been split into two parts with

a cutoff at 6 nm. The population identifier (A–D)

is marked on the right of each histogram, and the

contained step height is given (top right). The

histograms exhibit well-defined peaks at the posi-

tions where they are expected for the scenario of

structural topology with the constant velocity

unfolding pattern as a ruler. The measurement

was performed with 2 mMATP present in solution.

The probability of occurrence of peak 2* is linked

to pulling velocity and ATP content (21) and was

determined to be p ¼ 0.35, which matches the

expectations from constant velocity experiments

very well. (b) Probability density histograms with

single-exponential decay fits for the substeps of

TK unfolding from the folded conformation (F)

to the completely unfolded conformation (U) at

30 pN pulling force. Details of histogram genera-

tion and fitting are given in Rate Fitting (see

main text).

1984 Stahl et al.
2 (compare to Table 1). Those steps most likely describe the
unfolding of the fibronectin domain, because its fold is
inherently less stable than the Ig-fold (43,44). Although in
the majority of the traces the additional unfolding occurs
after the titin kinase barriers, a revision of the traces with
two steps in the identification interval at ~22 nm pointed
out that the position of this increment is random. In ~8%
of the traces, the additional step is located within the un-
folding of the kinase domain and does not shift the
sequence of barriers 1–5. Fig. 5 b shows the probability
distribution for the absolute unfolding times of the addi-
tional domain.

Because the Ig and Fn domains are comparatively stable
(45), unfolding occurs at longer timescales. In contrast to
Biophysical Journal 101(8) 1978–1986
the TK barriers, the additional domain is decaying exponen-
tially, which demonstrates well that the unfolding of these
domains is independent of the kinase unfolding according
to the principle of mechanical hierarchy. The measured
rate, however, does not correspond to the natural unfolding
rate at this force. The natural rate is expected to be much
lower; longer times are underrepresented in the histogram,
because the detachment of protein from the cantilever or
the surface occurs at a similar timescale (see Fig. S4 for
comparison). Furthermore, the effect that the fibronectin
fold may open in between the kinase domains means that
some of the steps that are contained in the histograms of
Fig. 4 a cannot be explained with the direct sequence from
barrier 1 to 5.



FIGURE 5 Markov-chain model and independent unfolding of the fibro-

nectin domain. (a) The unfolding probability distribution from barrier 5 into

the completely unfolded state (U) can be reasonably well fitted with the

model p5(t), which consists of a sequential Markov-chain with six depen-

dent single-exponential processes. The rates ki are taken from Table 1.

This model describes a structural topology of all barrier-causing structural

elements of titin kinase. The shift to longer times in the experimental data is

most likely due to slight offsets in the pulling force due to cantilever drift,

which cannot be neglected at the small clamping force of only 30 pN. (b)

Unfolding probability distribution for the fibronectin domains obtained at

30 pN pulling force. In contrast to the other barriers, the absolute unfolding

times of the fibronectin domain are exponential-distributed, which demon-

strates that this barrier unfolds independently from the structural elements

of titin kinase.

Conditional Gating Mechanism of TK 1985
DISCUSSION

In summary, our experiments and modeling have unraveled
the mechanical architecture of titin kinase as an example of
a biological mechanical force sensor. Our results confirm
that forces below 30 pN, reflecting a force imbalance in
the muscle sarcomere equivalent to only ~5 myosin motor
domains with 6 pN each (47), can result in significant
regional, but nondestructive conformational changes in
TK. In fact, on a timescale of seconds, forces much lower
than 30 pN are predicted to lead to opening of the TK active
site, because the rate of unfolding of the TK elements
strongly depends on the pulling force (see the Supporting
Material). This implies that even at lower forces than those
that were experimentally observable in our setup, barriers
may open at longer timescales. Modeled force-responses
of whole sarcomeres further suggest that the experimental
forces lie in the physiological accessible range (48).
The line of evidence from our measured single-molecule
force spectroscopy data proves that the underlying principle
that assures enzymatic function under the constraint of
applied force is the structural topology of at least some of
the force-bearing elements. The measured data strongly
suggest that the unfolding of the complete titin kinase
construct under force occurs in a series of six exponentially
distributed barriers that have to be overcome one after the
other. A protein architecture like this ensures the proper
function of this special enzyme, which can react to mechan-
ical stimuli with conformational changes while maintaining
its structural integrity. Before structural elements unfold that
support proper conformation of the active site, barriers have
to be overcome that determine the enzymatic response
(21,22).

The same stabilization principle has recently been shown
to be applicable also to artificially designed proteins, and
may be useful for novel multifunctional designed elements
in nanomechanics and nanobiotechnology (49).

Furthermore, the reliability of the experimental technique
was underlined by demonstrating that the recorded data are
able to prove the independent unfolding of the adjacent
fibronectin fold next to the protein kinase according to the
principle of mechanical hierarchy. The way in which
mechanical forces control the conformational landscape
of titin around its single catalytic domain suggest also
that protein interactions close to the kinase domain might
be subject to mechanical modulation. Integration of this
molecular information into future models of the sarcomeric
M-band should ultimately help us to understand how forces
in this enigmatic cellular structure are both resisted and
employed for signaling.
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