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interrogate the mechanical behavior of different proteins in a 
parallel and streamlined format with the same cantilever would 
offer distinct advantages. Such a screening approach could char-
acterize single-molecule properties such as unfolding forces, 
interdomain mechanical signatures and mechanically activated 
catch-bond behavior1. Screening of these properties could find 
applications in biotechnology and human health studies in which 
mechanical dysregulation or misfolding is suspected to play a 
role in pathology11.

Here we developed a platform for parallel characterization of 
individual protein mechanics in a single experiment (Fig. 1). 
Microspotted gene arrays were used to synthesize fusion proteins 
in situ using cell-free gene expression. Proteins were covalently 
immobilized inside multilayer microfluidic circuits. A single can-
tilever was then positioned above the protein array and used to 
probe the mechanical response of each individual protein via a 
common C-terminal dockerin (Doc) fusion tag. Genes of interest 
were chosen such that each gene product exhibited an identifiable 
unfolding pattern when loaded from the N to the C terminus. Each 
target protein was expressed with an N-terminal 11-amino-acid  
ybbR tag, which was used to covalently and site-specifically link 
the protein to the surface via Sfp synthase–catalyzed reaction with 
coenzyme A (CoA)12. At the C terminus the proteins contained a 
75-amino-acid cellulosomal Doc from Clostridium thermocellum13  
as a specific handle targeted by the cohesin (Coh)-modified  
cantilever.

The gene microarray was aligned and reversibly bonded to 
a microfluidic chip known as MITOMI (mechanically induced 
trapping of molecular interactions). The chip has been used in the 
past for screening transcription factors14,15 and mapping interac-
tion networks16. More recently, our group employed MITOMI 
chips for molecular force assays17. In this work, MITOMI chips 
featured 640 dumbbell-shaped unit cells in a flow layer and 2,004 
micromechanical valves in a control layer. Each unit cell was 
equipped with pneumatic ‘neck’, ‘sandwich’ and ‘button’ valves 
(Fig. 1a) according to design principles of soft lithography18. Each 
neck valve protected the microspotted DNA in the back cham-
ber from exposure to other reagents during surface patterning 
in the front chamber. The sandwich valves prevented chamber- 
to-chamber cross contamination, ensuring that only a single  
protein variant was present in each sample spot. For surface 
chemistry in the front chamber, the button valves were actuated 
to shield the sample spots, allowing n-dodecyl β-d-maltoside 
passivation in the surrounding area. Releasing the button valves 
allowed subsequent functionalization with CoA-poly(ethylene 
glycol) (CoA-PEG) in the sample area under the buttons serving 
as the protein immobilization site. We expressed the genes by 
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single-molecule force spectroscopy enables mechanical testing 
of individual proteins, but low experimental throughput limits 
the ability to screen constructs in parallel. We describe a 
microfluidic platform for on-chip expression, covalent surface 
attachment and measurement of single-molecule protein 
mechanical properties. a dockerin tag on each protein molecule 
allowed us to perform thousands of pulling cycles using a single 
cohesin-modified cantilever. the ability to synthesize and 
mechanically probe protein libraries enables high-throughput 
mechanical phenotyping.

Mechanical forces play a pivotal role in biological systems by 
performing tasks such as guiding cell adhesion1, inducing gene 
expression patterns2 and directing stem cell differentiation3. At 
the molecular level, mechanosensitive proteins act as sensors and 
transducers, communicating the presence and direction of applied 
forces to downstream signaling cascades. Conformational changes 
in response to mechanical forces4 and energetic barriers along 
unfolding pathways can be probed by single-molecule force spec-
troscopy (SMFS) techniques4. Such techniques, including optical 
tweezers, magnetic tweezers and atomic force microscopy (AFM), 
have been used to interrogate high-affinity receptor-ligand bind-
ing5, measure unfolding and refolding dynamics of individual 
protein domains6–8, observe base-pair stepping of RNA polymer-
ases9 and identify DNA stretching and twisting moduli10.

Despite these successes, SMFS experiments have been limited 
by low throughput. Experimental data sets typically contain a 
majority of unusable force-distance traces owing to the measure-
ment of multiple molecular interactions in parallel or a lack of spe-
cific interactions. Typical yields of interpretable single-molecule  
interaction traces in SMFS experiments vary between 1% and 
25%. The incapacity of SMFS to quickly screen libraries of 
molecular variants has hindered progress toward understanding 
sequence-structure-function relationships at the single-molecule  
level. In particular, the need to prepare each protein sample  
and cantilever separately increases experimental workload and 
gives rise to calibration uncertainties. Therefore, methods to 
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incubating an in vitro transcription and translation cell extract 
at 37 °C with the spotted DNA in the back chamber. The syn-
thesized proteins then diffused to the front chamber, where they 
were covalently linked to the surface via an Sfp-catalyzed reac-
tion of surface-bound CoA with solution-phase N-terminal ybbR 
peptide tags (Fig. 1b). Partial pressurization of the button valve19 
was used for tagging an outer concentric portion of the sample 
area with a fluorescently (TagRFP) tagged Coh that specifically 
bound to the C-terminal Doc tag of each target protein, thereby 
confirming successful protein synthesis and surface immobiliza-
tion (Supplementary Fig. 1). Finally, the microfluidic device was 
removed from the glass slide to provide access to the protein array 
from above. Using this approach, we generated microarrays of site-
specifically and covalently immobilized proteins for subsequent 
SMFS experiments, starting from a conventional gene array.

An inverted three-channel total-internal-reflection 
fluorescence/atomic force microscope (TIRF-AFM)20 was used 
to position the cantilever in the center of the fluorescent rings 
in the protein array and perform SMFS measurements (Fig. 1c). 
The Coh-modified cantilever was used to probe the surface for 
expressed target proteins containing the C-terminal Doc tag. 
Upon surface contact of the cantilever, formation of a Coh-Doc 

complex allowed measurement of target-protein unfolding in a 
well-controlled pulling geometry (N to C terminus). We retracted 
the probe at constant velocity and recorded force-extension traces 
that characterized the unfolding fingerprint of the target protein. 
This approach-retract process could be repeated many times at 
each array address to characterize each expression construct.

Several unique features of the C-terminal Doc tag make it 
particularly suitable as a protein handle for SMFS. Its small size 
of 8 kDa does not notably add to the molecular weight of the 
gene products, which is advantageous for cell-free expression. 
Additionally, Doc exhibits a specific and high-affinity inter-
action with Coh domains from the C. thermocellum scaffold  
protein CipA. Coh was used both for fluorescence detection of the 
expression constructs and for modification of the cantilever. On 
the basis of our prior work, the Coh-Doc interaction is character-
ized to be high affinity, with a dissociation constant Kd in the low 
nanomolar range and rupture forces >125 pN at a loading rate of 
10 nN/s (ref. 21). Our prior work also indicated that upon forced 
dissociation, Doc exhibited a characteristic double sawtooth rup-
ture peak with a contour length increment of 8 nm separating 
the two peaks. We used this two-pronged double rupture event 
at the end of each force-extension trace as a positive indicator 
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figure � | Method workflow. (a) A gene array  
was spotted onto a glass slide. Genes were  
designed with a common set of flanking  
sequences, including a T7 promoter region,  
ybbR tag, dockerin tag and T7 terminator  
(term.). The multilayer microfluidic chip  
featuring 640 unit cells was aligned to the  
DNA microarray and bonded to the glass slide.  
Each unit cell comprised a DNA chamber, a  
protein chamber, and superseding elastomeric  
control valves actuated by pneumatic pressure.  
PDMS, poly(dimethylsiloxane). (b) Control  
valves were used for spatially selective surface  
modification of each protein chamber with  
poly(ethylene glycol)–coenzyme A (PEG-CoA)  
and for fluidic isolation of each chamber before  
in vitro expression of the microspotted DNA.  
Fluorescence labeling with TagRFP-cohesin  
was achieved by partial button-valve  
pressurization, leaving only an outer  
concentric ring of immobilized gene products exposed to the labeling solution. DDM, n-dodecyl β-d-maltoside. (c) After removal of the microfluidic 
device, the resulting well-defined, covalently attached protein microarray was accessed from above with a cohesin-functionalized atomic force 
microscope (AFM) cantilever. Single-molecule unfolding traces of each of the protein constructs were thus acquired sequentially at each corresponding 
array address with a single cantilever in a single experiment.
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figure � | Representative single-molecule  
force traces recorded in different protein spots  
on a single chip with a single cantilever.  
(a–d) Four proteins of interest, anchored  
between the coenzyme A (CoA)-functionalized  
surface and the cohesin-functionalized  
cantilever, were probed: fibronectin tetramer (a), 
spectrin dimer (b), xylanase monomer (c)  
and sfGFP monomer (d). The crystal  
structure and pulling configuration (top) are  
shown for each construct. Each single-molecule  
force-distance trace (bottom) shows the  
individual unfolding fingerprint of the  
respective protein of interest followed by a  
common, final double sawtooth peak (gray) that is characteristic of the cohesin-dockerin rupture. Experimental data were fitted with the worm-like 
chain model (dashed lines). Unfolding intermediates were also observed (fitted for only xylanase in c; dotted colored line).



©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature methods  |  ADVANCE ONLINE PUBLICATION  |  �

brief communications

that the gene of interest was completely expressed through to 
the C terminus (Fig. 2). Furthermore, this double rupture peak 
indicated that the interaction with the Coh-modified cantilever 
was specific and that the pulling geometry was strictly controlled 
such that force was applied to the molecule of interest from the 
N to the C terminus.

To validate and demonstrate our approach, we expressed genes of 
interest comprising well-known fingerprint domains in the SMFS 
literature. We produced multimeric polyproteins including tetra-
meric human type-III fibronectin (FBN)22 and dimeric chicken 
brain α-spectrin (SPN)23. We also synthesized monomers of endo-
1,4-xylanase T6 from Geobacillus stearothermophilus (XYL)21, 
superfolder GFP (GFP)24 and twitchin kinase25. In all cases, the 
target proteins were fused to N-terminal ybbR and C-terminal Doc 
tags (Supplementary Figs. 2–6). Unfolding data for FBN, SPN, 
XYL and GFP were obtained using a single cantilever to probe a 
single microarray (Figs. 2 and 3). Twitchin kinase was found not to 
express in sufficient yield to provide reliable unfolding statistics.

We transformed force-extension data (Fig. 2) into contour 
length space26 using the worm-like chain model and compared the 
measured contour length increments with the amino acid sequence 
lengths of each protein and literature values. The observed con-
tour lengths and rupture forces were consistent with our expec-
tations. FBN showed a fourfold-repeated sequence of rupture 
peaks at contour length increments of 32 nm (∆Lc

FBN; Fig. 2a)  
frequently interrupted by an intermediate peak at 10–12 nm, both  
features characteristic of FBN22. SPN showed two regular  
sawtooth-like peaks with contour lengths of 33 nm (∆Lc

SPN; Fig. 2b)23.  
XYL exhibited a decreasing multipeaked unfolding fingerprint 
with a contour length increment of 92 nm (∆Lc

XYL; Fig. 2c),  
occasionally showing additional increments corresponding to 
unfolding of remaining XYL subdomains, a result consistent with 
the prior study and accounting for N-terminal immobilization 
of XYL21. GFP unfolding showed a contour length increment of  
74 nm (∆Lc

GFP; Fig. 2d)24. As each protein in the array contained 
the same C-terminal Doc tag, the final two rupture peaks in all 
force traces represented rupture of the Coh-Doc complex regard-
less of the protein of interest.

In our system, surface densities of expressed proteins were  
comparable to those obtained in conventional SMFS experiments. 
Uninterpretable and nonspecific interactions were excluded 
from the analysis (Supplementary Fig. 7). By collecting multiple 
unfolding traces, we assembled contour length diagrams for each 
protein of interest26,27 (Fig. 3a) and confirmed the predicted con-
tour length increments on the basis of the encoded amino acid 
sequences in each DNA spot. Coh-Doc rupture events for all 
protein constructs in the array clustered to the same population  
in the force-loading rate plot, independently of the preceding  

rupture peaks from the protein of interest (Fig. 3b). The Coh-Doc 
ruptures agreed with previously reported values at similar loading 
rates21. The unfolding events of the proteins of interest produced 
distinct populations in the force-loading rate plots (Fig. 3c). The 
unfolding events depended on the internal structure and the unfold-
ing pathway of the fingerprint domain when stretched between its N 
and C termini. SPN, for example, an elongated 3-helix bundle, was 
previously reported to exhibit a broader energy well (∆x = 1.7 nm;  
ref. 23) and showed a flatter distribution of unfolding forces than 
that of the more compact globular FBN domain with a shorter, 
steeper potential (∆x = 0.4 nm; ref. 22).

In summary, our flexible approach efficiently streamlines pro-
tein expression, purification and SMFS into a single integrated 
platform (Supplementary Discussion). The approach should 
be compatible with other in vitro expression systems including 
extracts derived from insects, rabbit reticulocytes and human 
cell lines, and it is capable of introducing post-translational  
modifications and non-natural amino acids, allowing, for exam-
ple, the screening of site-directed mutants. Our method allows for 
synthesis of cytotoxic proteins or proteins with a tendency to form 
inclusion bodies during bulk expression. In addition to provid-
ing greatly improved throughput, our system has the advantage 
of measuring multiple constructs with one cantilever, thereby 
eliminating errors introduced when performing multiple cali-
brations on different samples with uncertainties of ~10% (ref. 28).  
Detecting subtle differences in mechanical stability with this 
high-throughput approach could therefore be used to perform 
mechanical phenotyping experiments on similarly stable families 
of mutant proteins. This workflow opens the door to large-scale 
screening studies of protein nanomechanical properties.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Addgene: pET28a-ybbR-HIS-sfGFP-DocI, 
58708; pET28a-ybbR-HIS-CBM-CohI, 58709; pET28a-StrepII-
TagRFP-CohI, 58710; pET28a-ybbR-HIS-Xyl-DocI, 58711; 
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figure � | Unfolding and rupture statistics from multiple force traces. 
(a) Relative frequency of observing given contour lengths determined by 
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two-dimensional Gaussians. Respective means and s.d. are plotted in the 
corresponding colors as solid symbols and error bars. a.u., arbitrary units.
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pET28a-ybbR-HIS-10FNIII(x4)-DocI, 58712; pET28a-ybbR-
HIS-Spec(x2)-DocI, 58713.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Chip fabrication. Ready-to-use wafers for flow and control layers 
of the 640-chamber MITOMI design were obtained from Stanford 
Microfluidics Foundry (design name DTPAd)14. The flow wafer 
features 15-µm-high features, rounded by photoresist reflow, 
whereas the control wafer features a rectangular cross-section.

Microfluidic chips were cast in poly(dimethylsiloxane) (PDMS) 
from these wafers. For the control layer, Sylgard 184 (Dow 
Corning) base and curing agent were mixed at a ratio of 5:1 by 
weight, poured onto the wafer, degassed and partially cured for 
20 min at 80 °C. For the flow-layer wafer, a 20:1 base–to–curing  
agent mixture of Sylgard 184 was spin-coated for 75 s at  
1,600 r.p.m. and partially cured for 30 min at 80 °C. The control 
layer chips were cut out, inlet holes were punched and the chips 
were aligned onto the spin-coated PDMS on the flow-layer wafer. 
After the two-layer chips were baked for 90 min at 80 °C, they 
were cut and removed from the wafer, and inlet/outlet holes were 
punched. Microfluidic chips were stored for up to 6 weeks.

Cloning. For the construction of the fusion proteins, Gibson 
assembly29 was used. A ratio of 0.07 pmol vector to 0.3 pmol of 
insert was used for the fusion reaction. The primer sequences are 
provided in Supplementary Table 1. A pET28a plasmid was lin-
earized with primers 1 and 2. The dockerin type I–encoding gene 
was isolated from the xylanase-dockerin type I construct21 with 
primers 3 and 4. Codon-optimized sequences were purchased 
from GeneArt/Invitrogen. The genes of interest were designed 
in such a way that they already contained sequences overlapping 
those of their neighboring partners (pET28a and dockerin type I).  
In the case of the spectrin, two domains were linked with a flexible  
glycine-serine (×6) linker. For fibronectin, four type III domains 
were fused separated by glycine-serine (×6) linkers. The  
expression vector in all cases was a pET28a plasmid with a  
modified multiple cloning site (sequence attached: plasmids are 
available at Addgene, Supplementary Table 2). After construction, 
clones were verified via sequencing and amplified in NEB 5-alpha 
Escherichia coli cells. Following plasmid preparation, samples  
were concentrated up to 500 ng/µl before microspotting.

DNA microspotting. A 24 × 60–mm #1 thickness coverslip 
(Thermo Scientific) was silanized with 3-aminopropyldimethyl-
ethoxysilane (ABCR) following literature protocols30.

The DNA solution containing 1% (w/v) nuclease-free bovine 
serum albumin (Carl Roth) in nuclease-free water was microspot-
ted under humid atmosphere onto the silanized coverslip using 
the GIX Microplotter II (Sonoplot) and a glass capillary with a 
30-µm tip diameter (World Precision Instruments) according to 
the manufacturer’s instructions in a rectangular 40 × 16 pattern 
with 320-µm column pitch and 678-µm row pitch. Alignment 
of the DNA array and the microfluidic chip was done manually 
using a stereomicroscope. Bonding between the glass cover slip 
and microfluidic device was achieved by thermal bonding for  
5 h at 80 °C on a hot plate.

Protein synthesis on-chip. The microfluidic device was oper-
ated at a pressure of 4 p.s.i. in the flow layer and 15 p.s.i. in the 
control layer. Operation started with the button and neck valves 
actuated for surface passivation. The flow layer was passivated 
by flushing through standard buffer (25 mM Tris, 75 mM NaCl,  

1 mM CaCl2, pH 7.2) for 5 min and 2% n-dodecyl β-d-maltoside 
(Thermo Scientific) in nuclease-free H2O for 30 min (ref. 31). 
Next the button valve was opened, and borate buffer (50 mM 
sodium borate, pH 8.5) was flushed through for 30 min to depro-
tonate aminosilane groups on the glass surface.

For maleimide/coenzyme A functionalization, a solution of  
5 mM NHS-PEG-maleimide (MW = 513 Da, Thermo Scientific) 
in borate buffer was flushed through for 45 min. The device was 
then rinsed with nuclease-free H2O for 5 min, followed by 30 min  
of 20 mM coenzyme A (Merck) in coupling buffer (50 mM sodium 
phosphate, pH 7.2, 50 mM NaCl, 10 mM EDTA). The button 
valve was then actuated to protect the functionalized surface area  
followed by 5 min of rinsing with standard buffer.

S30 T7 HY (Promega) in vitro transcription and translation mix, 
supplemented with 1 µL T7 polymerase (Promega) and 0.5 µL  
RNase inhibitor (Invitrogen), was then flushed into the chip,  
filling the DNA chambers (neck valve open).

The neck valve was then closed, and the channels were filled 
with 4′-phosphopantetheinyl transferase (Sfp synthase) in Sfp 
buffer (50 mM HEPES, 10 mM MgCl2). The chip was then incu-
bated at 37 °C on a hot plate. After 1 h of incubation, the neck and 
the button valves were opened to allow Sfp synthase–catalyzed 
linkage of expressed protein to the coenzyme A–functionalized 
area below the button. At the same time the sandwich valves were 
actuated to avoid chamber-to-chamber cross-contamination. 
After another 1.5 h of incubation, the neck and button valves 
were closed, the sandwich valves were opened and the chip was 
rinsed with standard buffer for 20 min.

To verify successful protein expression and immobilization 
on the functionalized surface area, a fluorescent detection con-
struct (TagRFP–cohesin type I (2 µg/ml) in standard buffer) 
was flushed through the device for 10 min with the button valve 
actuated. The sandwich valves were then actuated, and the but-
ton valve partially released by decreasing the pressure to 11 p.s.i. 
After 20 min of incubation at room temperature, the sandwich 
valves were opened, and the chip flushed with standard buffer for  
20 min. Fluorescence images of all chambers were recorded on an 
inverted microscope with a 10× objective (Carl Zeiss), featuring 
an electron-multiplying charge-coupled device (EMCCD) camera 
(Andor). Prior to force spectroscopy experiments, the chip was 
stored in buffer at 4 °C.

Directly before measurement, the PDMS chip was peeled off from 
the glass substrate under buffer, revealing the microarray while 
avoiding drying of the functionalized surface. The array surface 
was then rinsed several times with buffer. We did not encounter any 
problems with cross-contamination between chambers.

Cantilever functionalization. A silicon-nitride cantilever bearing 
a silicon tip with a tip radius of ~8 nm (Biolever mini, Olympus) 
was silanized with ABCR as described previously30. Protein 
functionalization was performed in a similar way as reported  
previously27,31. Briefly, a 50 µM solution of CBM A2C–cohesin 
from C. thermocellum in standard buffer was incubated with  
1:2 (v/v) TCEP beads (Tris (2-carboxyethyl) phosphine disulfide 
reducing gel, Thermo Scientific), previously washed with standard 
buffer, for 2.5 h. The cantilever was submerged in borate buffer for  
45 min to deprotonate primary amine groups on the silanized 
surface and then incubated with 20 mM NHS-PEG-maleimide 
(MW = 5 kDa, Rapp Polymere) in borate buffer for 60 min.
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The cantilever was rinsed sequentially in three beakers of 
deionized H2O. TCEP beads were separated from the protein 
solution by centrifugation at 1,000g for 1 min. Next the cantilever 
was incubated for 60 min with reduced protein solution, which 
was diluted to a concentration of 1 mg/mL with standard buffer. 
Finally the cantilever was rinsed sequentially in three beakers 
of standard buffer and stored submerged in standard buffer in 
humid atmosphere at 4 °C for up to 24 h before use.

Force spectroscopy. A custom-built TIRF (total internal reflec-
tion fluorescence)-AFM (atomic force microscope) hybrid20,30 
was used to conduct the force spectroscopy measurements. The 
TIRF microscope was used to image fluorophores in up to three 
different color channels simultaneously using an iChrome MLE-S 
four-color laser (Toptica Photonics), an Optosplit III triple emis-
sion image splitter (Cairn Research) and a Xion3 EMCCD camera 
(Andor). A long-range stick-slip xy piezo nanopositioning sys-
tem (ANC350, Attocube Systems) allowed access to the whole 
microchip array as well as fine spatial sampling of different sur-
face molecules on the nanometer scale within each protein spot. 
Cantilever actuation in the z direction was performed by a LISA 
piezo-actuator (Physik Instrumente) driven by an MFP3D AFM 
controller (Asylum Research).

The following force spectroscopy protocol was performed 
repeatedly in each functionalized protein target area. The canti-
lever approach velocity was 3,000 nm/s, dwell time at the surface 
was 10 ms and retract velocity was 800 nm/s. Data were recorded 
with 6,250-Hz sampling rate. The cantilever typically had a spring 
constant in the range of 100 pN/nm and a resonance frequency of 
25 kHz in water. Accurate calibration of the system was performed 
by the nondestructive thermal method32,33 using corrections to 
account for discrepancies from the original theory27,34.

Data and statistical analysis. The raw data were converted from 
photodiode voltages into force values in newtons, and the follow-
ing standard corrections were applied. The zero force value for the 
unloaded cantilever in each curve was determined by averaging 
over 40-nm extension after the final complex rupture and sub-
tracting this value from each force value in the curve. The position 
of the surface was determined by finding the force value closest to 
0 in a small neighborhood of the first non-negative force value in 
the force-extension trace. The z piezo position was corrected for 
the true tip-sample separation due to deflection of the lever as a 
function of the force for a Hookean spring.

A pattern-recognition software based on a package described 
previously26 and adapted in-house chose the curves show-
ing worm-like chain force responses of the stretched protein  
constructs. Example curves showing multiple, unspecific or no 
interactions are shown in Supplementary Figure 7, together with 
a single xylanase trace for comparison. The expected protein 
backbone contour length increments for each construct were 
detected in contour length space: the real part of the following 
numerically solved inverse worm-like chain (WLC) formula27 

was used to transform force-extension data into force–contour 
length space for every measured force curve: 
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with L the contour length, x the extension, F the force, Lp the 
persistence length, k Boltzmann’s constant and T the temperature. 
Transformed data points were combined in a Gaussian kernel 
density estimate with a bandwidth of 1 nm and plotted with a 
resolution of 1 nm. In these resulting energy-barrier position dia-
grams, the contour length increments could easily be determined. 
The transformation was performed with the following parameters: 
persistence length Lp = 0.4 nm, thermal energy kT = 4.1 pN nm. 
Force and distance thresholds were applied at 10 pN and 5 nm, 
respectively. The measurement data sets in each protein spot on 
the chip typically showed a yield of 0.5–5% specific interactions.

The force peaks corresponding to protein domain unfolding 
events, as well as those corresponding to final ruptures, were line 
fitted in force-time space to measure the loading rate of each 
individual event.

WLC fits for demonstrative purposes in Figure 2 were done by 
using the following formula:
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with F the force, k the Boltzmann’s constant, T the temperature, Lp 
the persistence length, x the extension and L the contour length.

Discrepancies between contour length increments in fitted 
single-molecule traces and aligned contour length diagrams are 
artifacts caused by the fixed persistence length in the contour 
length transformation, whereas the WLC fits to single force traces 
treat both contour length and persistence length of each stretch as 
free parameters. An overview of the yield of interpretable curves 
of all constructs is available in Supplementary Table 3.

29. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).
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Supplementary Figure 1 

Microfluidic chip overview. 

(a) Photograph of a microfluidic chip bonded to a glass slide with a US dime for scale. Control channels are filled with food dye for 
better visualization. (b) Pattern of a typical DNA array, consisting of repeats of rows with four different genes and one row with nothing
spotted as negative control. (c) Photograph of a bonded PDMS chip onto the glass slide with DNA spots in the back chamber. The
orange highlighted frame shows a zoom in of the bottom left corner. (d) Typical fluorescence collage assembled from 640 single 
fluorescence micrographs of each protein chamber on one single chip shows pattern of expressed protein (assembly not to scale). 
Fluorescence signal of TagRFP reveals expression levels and Dockerin specificity. Here, low passivation of the protein chamber
facilitates visualization. (e) Three of 640 adjacent dumbbell-shaped chambers, one with sfGFP DNA spotted (left), one with Xylanase
DNA (center) and one negative control without DNA (right). Control channels are visualized with food dye: neck valve (green), sandwich
valve (red), and button valve (blue). (f) Fluorescence images showing GFP signal (top) from expressed and immobilized ybbR-sfGFP-
Dockerin (left), ybbR-Xylanase-Dockerin (center) with negative control lacking the spotted DNA (right). The bottom row shows the
signal from the TagRFP detection construct, which specifically bound to the Dockerin tag via the Cohesin domain. 
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Supplementary Figure 2 

Diagram of the expression vector pET28a with an individual gene of interest.  
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Supplementary Figure 3 

Schematic of the fibronectin tetramer gene cassette. 
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Supplementary Figure 4 

Schematic of the sfGFP dimer gene cassette. 
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Supplementary Figure 5 

Schematic of the spectrin dimer gene cassette. 
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Supplementary Figure 6 

Schematic of the xylanase gene cassette. 
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Supplementary Figure 7 

Exemplary force traces 

Example curves showing (a) uninterpretable interaction, (b) non-specific interaction of cantilever with surface, (c) no interaction, and (d) 
a specific Xylanase-Dockerin unfolding and unbinding trace. Curves similar to those shown in a-c were excluded from the analysis. 
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Supplementary Discussion 
Typically in SMFS experiments, rupture force – loading rate plots are used to 
characterize koff and Δx, the unbinding (or unfolding) probability per time unit and the 
distance to the transition state along the reaction coordinate, respectively, providing 
direct information about the energy landscape governing protein folding1. SMFS 
experiments are also complemented by all-atom simulations of such systems in silico. 
Recently, it was shown that high speed SMFS experiments could be performed at 
speeds achievable in molecular dynamics simulations2, overcoming a long standing 
discrepancy between experiment and simulation.  

In analyzing single-molecule unfolding curves (i.e., Fig. 2), we note that the spotted DNA 
at the measured array addresses correctly corresponded to the domain of interest 
encoded by the corresponding spotted DNA at that position. For example, the fibronectin 
tetramer was measured at array position (237), the spectrin dimer at position (239), the 
xylanase monomer at position (196), and the sfGFP monomer at position (238), 
corresponding to the correct genes deposited into the expression chambers at those 
array positions (Fig. 2). Typically 10–15 immobilization chambers per microarray were 
measured. Typically several thousand force curves were acquired giving rise to dozens 
of interpretable single-molecule interaction curves. 
 
Upper force limit 
Here we extend the discussion regarding the upper force limit for the SMFS-MITOMI 
system. In all force-distance data traces, the last rupture events represent unbinding of 
the Coh-Doc complex, not unfolding of a domain. This rupture force of the Coh-Doc 
complex represents an upper limit in force for the entire construct, since the Doc is used 
as a handle sequence grabbed by the Coh-modified cantilver. The system we described 
can therefore interrogate domains with mechanical rupture forces that lie below that of 
Coh-Doc (~125 pN at 10 nN/s). If proteins with larger unfolding forces should be 
investigated, other Coh-Doc domains that show even higher complex rupture forces can 
be used. The Coh-Doc pair from R. flavefaciens, for example (PDB 4IU3) exhibits 
rupture forces over 600 pN at these loading rates (unpublished data). This could 
alternatively be used as a handle sequence to interrogate mechanically more stable 
domains of interest.   
 
Computerized image analysis can be used to automate cantilever positioning above the 
fluorescent rings and subsequent acquisition of unfolding traces at each array address in 
combination with online force curve analysis to further increase throughput. Additionally, 
well-characterized reference proteins on the same chip may serve as calibration 
standards further minimizing uncertainty in absolute force values.  

It is possible to operate the MITOMI device in a simplified way without the need for 
microspotting template DNA and chip alignment. This manual option should encourage 
the interested community to apply the suggested method to their single molecule force 
spectroscopy experiments. MITOMI enables the experimenter to prepare up to 16 
different constructs in one column with 40 repeats each by flow-loading the DNA. Since 

Nature Methods: doi:10.1038/nmeth.3099



the valves are pressure sensitive it is also possible to operate these manually. This way 
it is possible to make use of the parallelized method without having the automation 
tools.Supplementary Materials & Methods 

DNA Sequences 

Supplementary Table 1. Overview of primers	  

 

Supplementary Table 2. Overview of DNA plasmids available at Addgene database	  

Addgene ID Construct 

58708 pET28a-ybbR-HIS-sfGFP-DocI 

58709 pET28a-ybbR-HIS-CBM-CohI 

58710 pET28a-StrepII-TagRFP-CohI 

58711 pET28a-ybbR-HIS-Xyl-DocI 

58712 pET28a-ybbR-HIS-10FNIII(x4)-DocI 

58713 pET28a-ybbR-HIS-Spec(x2)-DocI 

 Name Sequence 

1 FW-w/o C-Tags MCS TAACTCGAGTAAGATCCGGCTGC 

2 REV-N-Tags MCS GCTAGCACTAGTCCATGGGTG 

3 FW-DocI GA AAAGTGGTACCTGGTACTCC 

4 REV-XylDocI-GA CGGATCTTACTCGAGTTAGTTCTTGTACGGCAATGTATC 

5 FW 10FNIII GA CGCACCGGCTCTGGCTCTGGCTCTGTTAGTGATGTTCCGCGTG 

6 REV 10 FNIII GA GGAGTACCAGGTACCACTTTGGTGCG 

7 REV 10FNIII (auf GS Li) GA ACTAACAGAGCCAGAGCCAGAGCCGGTGCGATAATTGATTGAAATC 

8 FW sfGFP (auf MCS) GA   CACCCATGGACTAGTGCTAGCAGCAAAGGTGAAGAACTGTTTAC 

9 REV sfGFP (auf DocI) GA GGAGTACCAGGTACCACTTTCTTATACAGCTCATCCATACCATG 
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Multiple cloning site for the protein of interest: 
 

N terminal region 

T7 promoter | lac operator | RBS | ATG | ybbr Tag | HRV 3C 
protease site | HIS Tag (x6) 

TAATACGACTCACTATAGG|GGAATTGTGAGCGGATAACAATTCC|CCTGTAGAAATAATTTTGT
TTAACTTTAAG|AAGGA|GATATACAT|ATG|GGTACC|GACTCTCTGGAATTCATCGCTTCTAA
ACTGGCT|CTGGAAGTTCTGTTCCAGGGTCCG|CTGCAG|CACCACCACCACCACCAC|CCATGG
ACTAGTGCTAGC  

C terminal region 

Dockerin Type I | T7 terminator 

AAAGTGGTACCTGGTACTCCTTCTACTAAATTATACGGCGACGTCAATGATGACGGAAAAGTTAA
CTCAACTGACGCTGTAGCATTGAAGAGATATGTTTTGAGATCAGGTATAAGCATCAACACTGACA
ATGCCGATTTGAATGAAGACGGCAGAGTTAATTCAACTGACTTAGGAATTTTGAAGAGATATATT
CTCAAAGAAATAGATACATTGCCGTACAAGAAC|TAA|CTCGAGTAAGATCCGGCTGCTAACAAA
GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAA|CTAGCATAACCCCTTGGGG
CCTCTAAACGGGTCTTGAGGGGTTTTTT 

 

10 FibronectinIII (4x): 

Glycin-Serin Linker (x6) 

GTTAGTGATGTTCCGCGTGATCTGGAAGTTGTTGCAGCAACCCCGACCAGCCTGCTGATTAGCTG
GGATGCACCGGCAGTTACCGTTCGTTATTATCGTATTACCTATGGTGAAACCGGTGGTAATAGTC
CGGTTCAAGAATTTACCGTTCCGGGTAGCAAAAGCACCGCAACCATTAGCGGTCTGAAACCGGGT
GTTGATTACACCATTACCGTTTATGCCGTTACCGGTCGTGGTGATTCACCGGCAAGCAGCAAACC
GATTAGCATTAACTATCGTACCGGTAGCGGTAGTGGTAGCGTTTCAGATGTGCCTCGCGACCTGG
AAGTGGTGGCTGCCACACCGACCTCACTGCTGATCTCATGGGATGCCCCTGCCGTGACCGTGCGC
TATTATCGCATCACATATGGCGAGACAGGTGGCAATTCACCTGTGCAAGAATTCACAGTTCCTGG
TTCAAAAAGTACCGCCACAATTTCTGGCCTGAAACCTGGCGTGGATTACACAATCACAGTGTATG
CAGTGACAGGTCGCGGTGATAGTCCGGCAAGTTCAAAACCGATTTCAATCAATTATCGCACCGGC
TCTGGCTCTGGCTCTGTTAGTGATGTTCCGCGTGATCTGGAAGTTGTTGCAGCAACCCCGACCAG
CCTGCTGATTAGCTGGGATGCACCGGCAGTTACCGTTCGTTATTATCGTATTACCTATGGTGAAA
CCGGTGGTAATAGTCCGGTTCAAGAATTTACCGTTCCGGGTAGCAAAAGCACCGCAACCATTAGC
GGTCTGAAACCGGGTGTTGATTACACCATTACCGTTTATGCCGTTACCGGTCGTGGTGATTCACC
GGCAAGCAGCAAACCGATTAGCATTAACTATCGTACCGGTAGCGGTAGTGGTAGCGTTTCAGATG
TGCCTCGCGACCTGGAAGTGGTGGCTGCCACACCGACCTCACTGCTGATCTCATGGGATGCCCCT
GCCGTGACCGTGCGCTATTATCGCATCACATATGGCGAGACAGGTGGCAATTCACCTGTGCAAGA
ATTCACAGTTCCTGGTTCAAAAAGTACCGCCACAATTTCTGGCCTGAAACCTGGCGTGGATTACA
CAATCACAGTGTATGCAGTGACAGGTCGCGGTGATAGTCCGGCAAGTTCAAAACCGATTTCAATC
AAttaTCGCACC 
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sfGFP: 

AGCAAAGGTGAAGAACTGTTTACCGGTGTTGTTCCGATTCTGGTTGAACTGGATGGTGATGTTAA
TGGCCACAAATTTTCAGTTCGTGGTGAAGGCGAAGGTGATGCAACCATTGGTAAACTGACCCTGA
AATTTATCTGTACCACCGGCAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTAT
GGTGTTCAGTGTTTTAGCCGTTATCCGGATCATATGAAACGCCACGATTTTTTCAAAAGCGCAAT
GCCGGAAGGTTATGTTCAAGAACGTACCATCTCCTTTAAAGACGACGGTAAATACAAAACCCGTG
CCGTTGTTAAATTTGAAGGTGATACCCTGGTGAATCGCATTGAACTGAAAGGCACCGATTTTAAA
GAGGATGGTAATATCCTGGGCCACAAACTGGAATATAATTTCAATAGCCACAACGTGTATATCAC
CGCAGACAAACAGAAAAATGGCATCAAAGCCAATTTTACCGTGCGCCATAATGTTGAAGATGGTA
GCGTGCAGCTGGCAGATCATTATCAGCAGAATACCCCGATTGGTGATGGTCCGGTTCTGCTGCCG
GATAATCATTATCTGAGCACCCAGACCGTTCTGAGCAAAGATCCGAATGAAAAACGTGATCATAT
GGTGCTGCATGAGTATGTTAATGCAGCAGGTATTACCCATGGTATGGATGAGCTGTATAAG 

alpha-Spectrin repeat 16 (chicken brain) (x2): 

Glycin-Serine Linker (x6) 

CGTGCTAAACTGAACGAATCTCACCGTCTGCACCAGTTCTTCCGTGACATGGACGACGAAGAATC
TTGGATCAAAGAAAAAAAACTGCTGGTTTCTTCTGAAGACTACGGTCGTGACCTGACCGGTGTTC
AGAACCTGCGTAAAAAACACAAACGTCTGGAAGCTGAACTGGCTGCTCACGAACCGGCTATCCAG
GGTGTTCTGGACACCGGTAAAAAACTGTCTGACGACAACACCATCGGTAAAGAAGAAATCCAGCA
GCGTCTGGCTCAGTTCGTTGACCACTGGAAAGAACTGAAACAGCTGGCTGCTGCTCGTGGTCAGC
GTCTGGAAGAATCTCTGGAATACGGTAGCGGTAGCGGTTCACGTGCTAAACTGAACGAATCTCAC
CGTCTGCACCAGTTCTTCCGTGACATGGACGACGAAGAATCTTGGATCAAAGAAAAAAAACTGCT
GGTTTCTTCTGAAGACTACGGTCGTGACCTGACCGGTGTTCAGAACCTGCGTAAAAAACACAAAC
GTCTGGAAGCTGAACTGGCTGCTCACGAACCGGCTATCCAGGGTGTTCTGGACACCGGTAAAAAA
CTGTCTGACGACAACACCATCGGTAAAGAAGAAATCCAGCAGCGTCTGGCTCAGTTCGTTGACCA
CTGGAAAGAACTGAAACAGCTGGCTGCTGCTCGTGGTCAGCGTCTGGAAGAATCTCTGGAATAt 

Xylanase: 

AAGAATGCAGATTCCTATGCGAAAAAACCTCACATCAGCGCATTGAATGCCCCACAATTGGATCA
ACGCTACAAAAACGAGTTCACGATTGGTGCGGCAGTAGAACCTTATCAACTACAAAATGAAAAAG
ACGTACAAATGCTAAAGCGCCACTTCAACAGCATTGTTGCCGAGAACGTAATGAAACCGATCAGC
ATTCAACCTGAGGAAGGAAAATTCAATTTTGAACAAGCGGATCGAATTGTGAAGTTCGCTAAGGC
AAATGGCATGGATATTCGCTTCCATACACTCGTTTGGCACAGCCAAGTACCTCAATGGTTCTTTC
TTGACAAGGAAGGTAAGCCAATGGTTAATGAATGCGATCCAGTGAAACGTGAACAAAATAAACAA
CTGCTGTTAAAACGACTTGAAACTCATATTAAAACGATCGTCGAGCGGTACAAAGATGACATTAA
GTACTGGGACGTTGTAAATGAGGTTGTGGGGGACGACGGAAAACTGCGCAACTCTCCATGGTATC
AAATCGCCGGCATCGATTATATTAAAGTGGCATTCCAAGCAGCTAGAAAATATGGCGGAGACAAC
ATTAAGCTTTACATGAATGATTACAATACAGAAGTCGAACCGAAGCGAACCGCTCTTTACAATTT
AGTCAAACAACTGAAAGAAGAGGGTGTTCCGATCGACGGCATCGGCCATCAATCCCACATCCAAA
TCGGCTGGCCTTCTGAAGCAGAAATCGAGAAAACGATTAACATGTTCGCCGCTCTCGGTTTAGAC
AACCAAATCACTGAGCTTGATGTGAGCATGTACGGTTGGCCGCCGCGCGCTTACCCGACGTATGA
CGCCATTCCAAAACAAAAGTTTTTGGATCAGGCAGCGCGCTATGATCGTTTGTTCAAACTGTATG
AAAAGTTGAGCGATAAAATTAGCAACGTCACCTTCTGGGGCATCGCCGACAATCATACGTGGCTC
GACAGCCGTGCGGATGTGTACTATGACGCCAACGGGAATGTTGTGGTTGACCCGAACGCTCCGTA
CGCAAAAGTGGAAAAAGGGAAAGGAAAAGATGCGCCGTTCGTTTTTGGACCGGATTACAAAGTCA
AACCCGCATATTGGGCTATTATCGACCAC 
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Detection construct RFP-Cohesin: 
 

TagRFP-Cohesin: 

T7 promoter | lac operator | RBS | ATG | StrepII Tag | TagRFP | 
Linker | Cohesin | T7 terminator 

 

TAATACGACTCACTATAGG|GGAATTGTGAGCGGATAACAATTCC|CCTGTAGAAATAATTTTGT
TTAACTTTAAG|AAGGA|GATATACAT|ATG|GGTACC|TGGTCTCACCCGCAGTTCGAAAAA|G
TTTCTAAAGGTGAAGAACTGATCAAAGAAAACATGCACATGAAACTGTACATGGAAGGTACTGTT
AACAACCACCACTTCAAATGCACCTCTGAAGGTGAAGGTAAACCGTACGAAGGTACTCAGACCAT
GCGTATCAAAGTTGTTGAAGGTGGTCCGCTGCCGTTCGCTTTCGACATCCTGGCTACCTCTTTCA
TGTACGGTTCTCGTACCTTCATCAACCACACCCAGGGTATCCCGGACTTCTTCAAACAGTCTTTC
CCGGAAGGTTTCACCTGGGAACGTGTTACCACCTACGAAGACGGTGGTGTTCTGACCGCTACCCA
GGACACCTCTCTGCAAGACGGTTGCCTGATCTACAACGTTAAAATCCGTGGTGTTAACTTCCCGT
CTAACGGTCCGGTTATGCAGAAAAAAACCCTGGGTTGGGAAGCTAACACCGAAATGCTGTACCCG
GCTGACGGTGGTCTGGAAGGTCGTTCTGACATGGCTCTGAAACTGGTTGGTGGTGGTCACCTGAT
CTGCAACTTCAAAACCACCTACCGTTCTAAAAAACCGGCTAAAAACCTGAAAATGCCGGGTGTTT
ACTACGTTGACCACCGTCTGGAACGTATCAAAGAAGCTGACAAAGAAACCTACGTTGAACAGCAC
GAAGTTGCTGTTGCTCGTTACTGCGACCTGCCGTCTAAACTGGGTCACAAACTGAAC|GGCAGTG
TAGTACCATCAACACAGCCTGTAACAACACCACCTGCAACAACAAAACCACCTGCAACAACAATA
CCGCCGTCAGATGATCCGAATGCA|GGATCCGACGGTGTGGTAGTAGAAATTGGCAAAGTTACGG
GATCTGTTGGAACTACAGTTGAAATACCTGTATATTTCAGAGGAGTTCCATCCAAAGGAATAGCA
AACTGCGACTTTGTGTTCAGATATGATCCGAATGTATTGGAAATTATAGGGATAGATCCCGGAGA
CATAATAGTTGACCCGAATCCTACCAAGAGCTTTGATACTGCAATATATCCTGACAGAAAGATAA
TAGTATTCCTGTTTGCGGAAGACAGCGGAACAGGAGCGTATGCAATAACTAAAGACGGAGTATTT
GCAAAAATAAGAGCAACTGTAAAATCAAGTGCTCCGGGCTATATTACTTTCGACGAAGTAGGTGG
ATTTGCAGATAATGACCTGGTAGAACAGAAGGTATCATTTATAGACGGTGGTGTTAACGTTGGCA
ATGCAACA|TAA|CTCGAGTAAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTG
CTGCCACCGCTGAGCAATAA|CTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTT
TTT 

Molecular weights of synthesized fusion proteins 

ybbR-(Fibronectin)4-Dockerin Type I: 53 kDa 
ybbR-(Spectrin)2-Dockerin Type I: 40 kDa 
ybbR-Xylanase-Dockerin Type I: 56 kDa 
ybbR-sfGFP-Dockerin Type I: 39 kDa 
ybbR-Twitchin-Dockerin Type I: 52 kDa 
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Supplementary Table 3. Yield of interpretable curves	  

Construct Interpretable Curves 

GFP 25 out of 15258 = 0.16 % 

Fibronectin 27 out of 26653 = 0.1 % 

Xylanase 91 out of 5553 = 1.64 % 

Spectrin 50 out of 10344 = 0.48% 
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